翻訳と辞書
Words near each other
・ HNLMS Walrus (S802)
・ HNLMS Willem van der Zaan
・ HNLMS Willem van der Zaan (ML-2)
・ HNLMS Willem van Ewijck (1937)
・ HNLMS Witte de With
・ HNLMS Witte de With (1928)
・ HNLMS Zeehond
・ HNLMS Zeehond (S809)
・ HNLMS Zeeland
・ HNLMS Zeeland (1897)
・ HNLMS Zeeleeuw
・ HNLMS Zeeleeuw (S803)
・ HNLMS Zuiderkruis (A832)
・ HNLMS Zwaardvis (S806)
・ HNLMS Zwaardvisch (P322)
HNN extension
・ HNNK Hrvat Chicago
・ HNNY
・ Hnojice
・ Hnojné
・ Hnojník
・ Hnokkyo
・ HNoMS Bergen
・ HNoMS Bergen (1946)
・ HNoMS Bergen (F301)
・ HNoMS Brage
・ HNoMS Brage (1878)
・ HNoMS Brand (1898)
・ HNoMS Brann
・ HNoMS Draug


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

HNN extension : ウィキペディア英語版
HNN extension
In mathematics, the HNN extension is a basic construction of combinatorial group theory.
Introduced in a 1949 paper ''Embedding Theorems for Groups'' by Graham Higman, B. H. Neumann and Hanna Neumann, it embeds a given group ''G'' into another group ''G' '', in such a way that two given isomorphic subgroups of ''G'' are conjugate (through a given isomorphism) in ''G' ''.
==Construction==
Let ''G'' be a group with presentation ''G'' = <''S''|''R''>, and let α : ''H'' → ''K'' be an isomorphism between two subgroups of ''G''. Let ''t'' be a new symbol not in ''S'', and define
:G
*_ = \left \langle S,t \Big| R, tht^=\alpha(h), \forall h\in H \right \rangle.
The group ''G''∗α is called the ''HNN extension of'' ''G'' ''relative to'' α. The original group G is called the ''base group'' for the construction, while the subgroups ''H'' and ''K'' are the ''associated subgroups''. The new generator ''t'' is called the ''stable letter''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「HNN extension」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.